Extensions 1→N→G→Q→1 with N=C5xDic5 and Q=C22

Direct product G=NxQ with N=C5xDic5 and Q=C22
dρLabelID
Dic5xC2xC1080Dic5xC2xC10400,189

Semidirect products G=N:Q with N=C5xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xDic5):1C22 = D5xC5:D4φ: C22/C1C22 ⊆ Out C5xDic5404(C5xDic5):1C2^2400,179
(C5xDic5):2C22 = D10:D10φ: C22/C1C22 ⊆ Out C5xDic5204+(C5xDic5):2C2^2400,180
(C5xDic5):3C22 = D5xD20φ: C22/C2C2 ⊆ Out C5xDic5404+(C5xDic5):3C2^2400,170
(C5xDic5):4C22 = C2xC5:D20φ: C22/C2C2 ⊆ Out C5xDic540(C5xDic5):4C2^2400,177
(C5xDic5):5C22 = C4xD52φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5):5C2^2400,169
(C5xDic5):6C22 = C2xD5xDic5φ: C22/C2C2 ⊆ Out C5xDic580(C5xDic5):6C2^2400,172
(C5xDic5):7C22 = C2xDic5:2D5φ: C22/C2C2 ⊆ Out C5xDic540(C5xDic5):7C2^2400,175
(C5xDic5):8C22 = C5xD4xD5φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5):8C2^2400,185
(C5xDic5):9C22 = C10xC5:D4φ: C22/C2C2 ⊆ Out C5xDic540(C5xDic5):9C2^2400,190
(C5xDic5):10C22 = D5xC2xC20φ: trivial image80(C5xDic5):10C2^2400,182

Non-split extensions G=N.Q with N=C5xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xDic5).1C22 = D5xDic10φ: C22/C1C22 ⊆ Out C5xDic5804-(C5xDic5).1C2^2400,163
(C5xDic5).2C22 = D20:D5φ: C22/C1C22 ⊆ Out C5xDic5404(C5xDic5).2C2^2400,165
(C5xDic5).3C22 = Dic10:D5φ: C22/C1C22 ⊆ Out C5xDic5404(C5xDic5).3C2^2400,166
(C5xDic5).4C22 = Dic10:5D5φ: C22/C1C22 ⊆ Out C5xDic5404+(C5xDic5).4C2^2400,168
(C5xDic5).5C22 = D10.4D10φ: C22/C1C22 ⊆ Out C5xDic5404-(C5xDic5).5C2^2400,174
(C5xDic5).6C22 = D5xC5:C8φ: C22/C1C22 ⊆ Out C5xDic5808-(C5xDic5).6C2^2400,120
(C5xDic5).7C22 = Dic5.4F5φ: C22/C1C22 ⊆ Out C5xDic5408+(C5xDic5).7C2^2400,121
(C5xDic5).8C22 = D10.F5φ: C22/C1C22 ⊆ Out C5xDic5808-(C5xDic5).8C2^2400,122
(C5xDic5).9C22 = Dic5.F5φ: C22/C1C22 ⊆ Out C5xDic5408+(C5xDic5).9C2^2400,123
(C5xDic5).10C22 = C5xD5:C8φ: C22/C2C2 ⊆ Out C5xDic5804(C5xDic5).10C2^2400,135
(C5xDic5).11C22 = C5xC4.F5φ: C22/C2C2 ⊆ Out C5xDic5804(C5xDic5).11C2^2400,136
(C5xDic5).12C22 = C10xC5:C8φ: C22/C2C2 ⊆ Out C5xDic580(C5xDic5).12C2^2400,139
(C5xDic5).13C22 = C5xC22.F5φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5).13C2^2400,140
(C5xDic5).14C22 = D10.9D10φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5).14C2^2400,167
(C5xDic5).15C22 = C2xC52:2Q8φ: C22/C2C2 ⊆ Out C5xDic580(C5xDic5).15C2^2400,178
(C5xDic5).16C22 = C20.14F5φ: C22/C2C2 ⊆ Out C5xDic5804(C5xDic5).16C2^2400,142
(C5xDic5).17C22 = C20.12F5φ: C22/C2C2 ⊆ Out C5xDic5804(C5xDic5).17C2^2400,143
(C5xDic5).18C22 = C2xC52:3C8φ: C22/C2C2 ⊆ Out C5xDic580(C5xDic5).18C2^2400,146
(C5xDic5).19C22 = C102.C4φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5).19C2^2400,147
(C5xDic5).20C22 = D20:5D5φ: C22/C2C2 ⊆ Out C5xDic5804-(C5xDic5).20C2^2400,164
(C5xDic5).21C22 = Dic5.D10φ: C22/C2C2 ⊆ Out C5xDic5404(C5xDic5).21C2^2400,173
(C5xDic5).22C22 = C10xDic10φ: C22/C2C2 ⊆ Out C5xDic580(C5xDic5).22C2^2400,181
(C5xDic5).23C22 = C5xC4oD20φ: C22/C2C2 ⊆ Out C5xDic5402(C5xDic5).23C2^2400,184
(C5xDic5).24C22 = C5xQ8xD5φ: C22/C2C2 ⊆ Out C5xDic5804(C5xDic5).24C2^2400,187
(C5xDic5).25C22 = C5xD4:2D5φ: trivial image404(C5xDic5).25C2^2400,186
(C5xDic5).26C22 = C5xQ8:2D5φ: trivial image804(C5xDic5).26C2^2400,188

׿
x
:
Z
F
o
wr
Q
<