Extensions 1→N→G→Q→1 with N=C5×Dic5 and Q=C22

Direct product G=N×Q with N=C5×Dic5 and Q=C22
dρLabelID
Dic5×C2×C1080Dic5xC2xC10400,189

Semidirect products G=N:Q with N=C5×Dic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×Dic5)⋊1C22 = D5×C5⋊D4φ: C22/C1C22 ⊆ Out C5×Dic5404(C5xDic5):1C2^2400,179
(C5×Dic5)⋊2C22 = D10⋊D10φ: C22/C1C22 ⊆ Out C5×Dic5204+(C5xDic5):2C2^2400,180
(C5×Dic5)⋊3C22 = D5×D20φ: C22/C2C2 ⊆ Out C5×Dic5404+(C5xDic5):3C2^2400,170
(C5×Dic5)⋊4C22 = C2×C5⋊D20φ: C22/C2C2 ⊆ Out C5×Dic540(C5xDic5):4C2^2400,177
(C5×Dic5)⋊5C22 = C4×D52φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5):5C2^2400,169
(C5×Dic5)⋊6C22 = C2×D5×Dic5φ: C22/C2C2 ⊆ Out C5×Dic580(C5xDic5):6C2^2400,172
(C5×Dic5)⋊7C22 = C2×Dic52D5φ: C22/C2C2 ⊆ Out C5×Dic540(C5xDic5):7C2^2400,175
(C5×Dic5)⋊8C22 = C5×D4×D5φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5):8C2^2400,185
(C5×Dic5)⋊9C22 = C10×C5⋊D4φ: C22/C2C2 ⊆ Out C5×Dic540(C5xDic5):9C2^2400,190
(C5×Dic5)⋊10C22 = D5×C2×C20φ: trivial image80(C5xDic5):10C2^2400,182

Non-split extensions G=N.Q with N=C5×Dic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5×Dic5).1C22 = D5×Dic10φ: C22/C1C22 ⊆ Out C5×Dic5804-(C5xDic5).1C2^2400,163
(C5×Dic5).2C22 = D20⋊D5φ: C22/C1C22 ⊆ Out C5×Dic5404(C5xDic5).2C2^2400,165
(C5×Dic5).3C22 = Dic10⋊D5φ: C22/C1C22 ⊆ Out C5×Dic5404(C5xDic5).3C2^2400,166
(C5×Dic5).4C22 = Dic105D5φ: C22/C1C22 ⊆ Out C5×Dic5404+(C5xDic5).4C2^2400,168
(C5×Dic5).5C22 = D10.4D10φ: C22/C1C22 ⊆ Out C5×Dic5404-(C5xDic5).5C2^2400,174
(C5×Dic5).6C22 = D5×C5⋊C8φ: C22/C1C22 ⊆ Out C5×Dic5808-(C5xDic5).6C2^2400,120
(C5×Dic5).7C22 = Dic5.4F5φ: C22/C1C22 ⊆ Out C5×Dic5408+(C5xDic5).7C2^2400,121
(C5×Dic5).8C22 = D10.F5φ: C22/C1C22 ⊆ Out C5×Dic5808-(C5xDic5).8C2^2400,122
(C5×Dic5).9C22 = Dic5.F5φ: C22/C1C22 ⊆ Out C5×Dic5408+(C5xDic5).9C2^2400,123
(C5×Dic5).10C22 = C5×D5⋊C8φ: C22/C2C2 ⊆ Out C5×Dic5804(C5xDic5).10C2^2400,135
(C5×Dic5).11C22 = C5×C4.F5φ: C22/C2C2 ⊆ Out C5×Dic5804(C5xDic5).11C2^2400,136
(C5×Dic5).12C22 = C10×C5⋊C8φ: C22/C2C2 ⊆ Out C5×Dic580(C5xDic5).12C2^2400,139
(C5×Dic5).13C22 = C5×C22.F5φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5).13C2^2400,140
(C5×Dic5).14C22 = D10.9D10φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5).14C2^2400,167
(C5×Dic5).15C22 = C2×C522Q8φ: C22/C2C2 ⊆ Out C5×Dic580(C5xDic5).15C2^2400,178
(C5×Dic5).16C22 = C20.14F5φ: C22/C2C2 ⊆ Out C5×Dic5804(C5xDic5).16C2^2400,142
(C5×Dic5).17C22 = C20.12F5φ: C22/C2C2 ⊆ Out C5×Dic5804(C5xDic5).17C2^2400,143
(C5×Dic5).18C22 = C2×C523C8φ: C22/C2C2 ⊆ Out C5×Dic580(C5xDic5).18C2^2400,146
(C5×Dic5).19C22 = C102.C4φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5).19C2^2400,147
(C5×Dic5).20C22 = D205D5φ: C22/C2C2 ⊆ Out C5×Dic5804-(C5xDic5).20C2^2400,164
(C5×Dic5).21C22 = Dic5.D10φ: C22/C2C2 ⊆ Out C5×Dic5404(C5xDic5).21C2^2400,173
(C5×Dic5).22C22 = C10×Dic10φ: C22/C2C2 ⊆ Out C5×Dic580(C5xDic5).22C2^2400,181
(C5×Dic5).23C22 = C5×C4○D20φ: C22/C2C2 ⊆ Out C5×Dic5402(C5xDic5).23C2^2400,184
(C5×Dic5).24C22 = C5×Q8×D5φ: C22/C2C2 ⊆ Out C5×Dic5804(C5xDic5).24C2^2400,187
(C5×Dic5).25C22 = C5×D42D5φ: trivial image404(C5xDic5).25C2^2400,186
(C5×Dic5).26C22 = C5×Q82D5φ: trivial image804(C5xDic5).26C2^2400,188

׿
×
𝔽